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a b s t r a c t

The fluid (continuum) approach is commonly used for simulation of plasma phenomena in
electrical discharges at moderate to high pressures (>10’s mTorr). The description com-
prises governing equations for charged and neutral species transport and energy equations
for electrons and the heavy species, coupled to equations for the electromagnetic fields.
The coupling of energy from the electrostatic field to the plasma species is modeled by
the Joule heating term which appears in the electron and heavy species (ion) energy equa-
tions. Proper numerical discretization of this term is necessary for accurate description of
discharge energetics; however, discretization of this term poses a special problem in the
case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each
cell. We propose a method for the numerical discretization of the Joule heating term using
a cell-centered finite volume approach on unstructured meshes with closed convex cells.
The Joule heating term is computed by evaluating both the electric field and the species
flux at the cell center. The dot product of these two vector quantities is computed to obtain
the Joule heating source term. We compare two methods to evaluate the species flux at the
cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at
the face centers. The other recomputes the flux at the cell center using the common drift-
diffusion approximation. The reconstructed flux scheme is the most stable method and
yields reasonably accurate results on coarse meshes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Fluid (continuum) models have been used since the 1960s to simulate plasma discharge phenomena. Fluid models de-
scribe the transport of electrons, ions and neutral species using moments of the species Boltzmann equation coupled to elec-
tromagnetic field equations. These models provide spatial and temporal information on averaged properties such as species
density and species temperature in discharges and the electromagnetic fields in the discharge. A wide variety of plasmas
such as low-pressure glow discharges [1–3], radio-frequency plasma discharges [4–6], dielectric barrier discharges [7],
microdischarges [8–11] and streamers [12] have been simulated using the fluid modeling framework.

A typical fluid model solves the following governing equations. The species continuity equation determines the individual
species number densities ðnkÞ in the discharge as follows
@nk

@t
þ ~r � ~Ck ¼ _Gk; ð1Þ
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where, k represents the species index, ~Ck is the species drift-diffusion flux, and _Gk is the gas-phase species generation rate
through plasma chemical reactions. The self-consistent electric potential is determined using the electrostatic Poisson’s
equation
r2/þ e
e0

XKg

k¼1

Zknk ¼ 0; ð2Þ
where, / is the potential, e is the unit electric charge, e0 is the permittivity of free space, Kg is the total number of gas species,
and Zk is the charge number of species k (e.g. �1 for electrons). Electron transport coefficients and the rate coefficients of
electron impact reactions are a strong function of the electron energy distribution function which may be parameterized
by a local electron temperature ðTeÞ [8–11]. In case the local fluid approximation is not used, fluid models include an electron
energy equation to determine the electron energy density ee ¼ 3
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where, ge is the thermal conductivity of electrons, kB is the Boltzmann’s constant, me and mkb
are the particle mass of electron

and dominant background gas species, respectively, �me;kb
is the electron momentum transfer collision frequency with the

background gas, DEe
j is the energy lost per electron (in eV units) in an inelastic collision event represented by a gas-phase

reaction j; rj is the rate of progress of a reaction j (in m�3 s�1 units), and Ig is the total number of gas-phase reactions. The
electrostatic field is determined from the electrostatic potential as~E ¼ �~r/. Finally, the gas temperature ðTgÞ can be deter-
mined through the gas energy equation
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where, hk;sens is the sensible enthalpy of species k;gk is the thermal conductivity of species k;DEg
j is the energy lost from the

thermal pool in an inelastic collision event represented by a gas reaction j, and the index h indicates the summation over all
the heavy species. The above gas energy equation uses the constant pressure assumption and neglects fluid mechanical vis-
cous dissipation.

The Joule heating source term, i.e. the first term on the RHS of (3) and (4), constitutes the main source term in the electron
energy balance and often times for the gas energy equation. Since reaction rates due to electron impact are exponential func-
tions of the electron temperature, small deviations in the electron energy density can result in significant changes in the pre-
dicted discharge characteristics. Most reaction rates also depend on the number density of the background gas, and therefore
on the gas temperature. The accuracy of the method used to compute the Joule heating term in the energy balance equations
is therefore critical. As shown in [13], the stability of the numerical scheme also depends on the technique used to compute
the source term of the electron energy equation owing to temporal stiffness introduced by this term for several types of plas-
ma discharge problems.

Complex two-dimensional or three-dimensional geometries are now commonly encountered in the modeling of plasma
discharges. Local mesh refinement is often needed to capture the steep gradients in the number density and in the electric
field profiles. To optimize mesh resolution, adaptive mesh techniques can be pursued [12]. For these reasons, the use of
unstructured meshes is necessary, as it already is the case for computational fluid dynamics. Robust and accurate numerical
methods to simulate gas discharges on unstructured meshes must therefore be developed. Several issues specific to the self-
consistent simulations of plasma phenomena using a cell-centered finite-volume approach arise in the context of unstruc-
tured meshes, the treatment of the Joule heating term being one. Here we discuss a simple and accurate approach for the
numerical treatment of this term in the context of a cell-centered finite-volume discretization of the plasma discharge gov-
erning equations on generalized unstructured meshes. The technique can be used on structured meshes as well, where it
reduces to a simplified numerical stencil.
2. Numerical method

The governing equations (1)–(4) can be cast in an integral form, by integrating over an arbitrary control volume V as
Z
v

@a
@t

dV þ
Z
@V

~Ca � dS ¼
Z

V
Sa dV ; ð5Þ
where, a is the dependent variable (the species number densities nk, the electrostatic potential /, the electron energy den-
sities ee, or the gas temperature Tg), ~Ca are the fluxes, and Sa are the source terms. In the cell-centered finite-volume scheme
for a fixed non-moving mesh, the following spatial discretization is used to approximate (5)
Vcell
@acc

@t
þ
X

f

Ca;fcAf ¼ V cellSa;cc; ð6Þ
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where, V cell is the cell volume, the index f indicates the summation over all the faces enclosing the cell, Af is the area of face f,
the subscript cc indicates cell-centered value of the corresponding variable, and the subscript fc indicates face-centered val-
ues. For the gas discharge governing equations, the fluxes Ca;fc are the normal projections of the species fluxes, the electric
field, and the electron and gas energy fluxes at the face centers and are assumed positive directed out of the cell. Figs. 1 and 2,
show the locations at which the normal projections of the fluxes are evaluated for a structured and unstructured mesh,
respectively.

Several discretization schemes of the fluxes at the face centers are tested in this study. The consistency and accuracy of
the following three methods will be shown:

– Central-difference flux:
Fig. 1.
compon
Ca;fc ¼ Vfc
acc;1 þ acc;2
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– Upwinded flux:
Ca;fc ¼ Vfcacc;1 � Dfc
acc;1 � acc;2
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– Scharfetter–Gummel Flux [14]:
Ca;fc ¼ Vfc acc;1 þ
acc;1 � acc;2
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where Vfc is the convective velocity at the face center (e.g. �leEfc for the electron flux), acc;1 and acc;2 are the solution vari-
ables at the two neighboring cell centers, and Dfc is the diffusion coefficient at the face center. The convective velocity and the
flux are assumed positive directed from the first cell towards the second cell. The solution variable ðaÞ in the transport term
is handled implicitly to allow time step sizes that exceed the CFL (Courant-Fredrich-Lewy) limitation [13].

The cell-centered value of the Joule heating source term contribution to Sa;cc , appearing in both (3) and (4), can be eval-
uated by first evaluating the contribution at the face centers (where the fluxes are available), and then interpolating the Joule
heating source term at the cell center. This technique has been used by several authors on structured meshes [6,10,13]. Using
this approach, the Joule heating is evaluated as follows for a two-dimensional structured mesh (see Fig. 1)
½~E � ~C�ði; jÞ ¼ 1
2
½Exðiþ 1=2; jÞCxðiþ 1=2; jÞ þ Exði� 1=2; jÞCxði� 1=2; jÞ þ Eyði; jþ 1=2ÞCyði; jþ 1=2Þ

þ Eyði; j� 1=2ÞCyði; j� 1=2Þ�: ð10Þ
In (10) the subscript k is dropped from the species flux term ~Ck for convenience. The subscripts x and y refers to the coor-
dinate directions and the symbols i and j, refer to the node locations in a structured mesh (Fig. 1). The Joule heating in (10) is
computed by adding the average contribution of the dot product in the x and y directions. Note that it is not simply an aver-
age of the product~E � ~C computed on each face, in which case the factor in the denominator would have been 4 instead of 2.
The reason this method can be used on structured meshes is because the face normals lie exactly along the coordinate
Orthogonal two-dimensional structured mesh. Scalar solution variables are evaluated at the cell center (point with solid circle). The x- and y-
ents of the fluxes are evaluated at the face centers (points with open circles).



Fig. 2. Reconstruction of the species flux at the cell center (for a triangular and quadrilateral cell) based on the normal projection of the fluxes at the face
centers. The dotted lines are perpendiculars to the faces that intersect the cell center.
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directions. On an unstructured mesh, the face normal orientation is arbitrary and hence an extension of (10) is not
straightforward.

We propose the following approach to computing the Joule heating source term on a general unstructured mesh with
closed convex cells. The term is computed directly at the cell centers by evaluating the dot product of the electric field
and the species flux at the cell centers. The two vector quantities can be evaluated explicitly at the cell centers (~Ecc and
~Ccc , respectively) using solution variables and fluxes already computed at the faces for the Poisson’s (2) and species conti-
nuity equations (1) by the cell-centered finite-volume method. The face fluxes are nominally available at the face centers
(fc). The Green-Gauss or least-squares reconstruction [15] techniques are commonly used to evaluate the gradient of cell-
centered solution variables. Because of ease of implementation, we chose to use the Green-Gauss method to obtain the elec-
tric field from the potential field. By this method, the gradient is constructed by applying the Green-Gauss theorem to indi-
vidual cell volumes in the mesh as follows,
ð~r/Þcc ¼
1

Vcell

X
f

/fc
~Af ; ð11Þ
where, /fc is the value of potential at the face center, ~Af is the normal area vector of face f (pointing away from the cell), and
the summation is over all the faces enclosing the cell. One can interpolate the face-centered value /fc from the values of the
potential at the two neighboring cells centers using a simple average or a higher-order weighted averaging procedure.

Evaluation of the species flux vector value at the cell center ð~CccÞ however poses a special problem since only the normal
projection of the species fluxes ðCfcÞ are available at the face centers through the cell-centered finite-volume method. We
propose to reconstruct the species flux vector at the cell center from these normal projections of the species fluxes at the
faces enclosing the cell. We refer to this approach as the ‘‘Reconstruction-Flux” scheme which we depict in Fig. 2. To
first-order, we assume that the flux we are reconstructing ð~CÞ is piecewise constant within each cell. This implies that
the flux field is irrotational within each cell and that there exists a scalar, w, such that ~C ¼ ~rw. We assign an arbitrary con-
stant value K to w at the cell center. At each face enclosing the cell, we define a new point fp, such that the face area normal
vector through the point fp is collinear with cell center cc. If the normal projection of the species flux at fc ðCfcÞ is assumed a
constant across the entire face, the normal projection of the species flux at the point fp ðCfpÞ is equal to Cfc . We can now esti-
mate the value of w at fp ðwfpÞ for each face by performing a line integration along the line joining cc and fp, i.e.
wfp ¼ K þ dcpCfp; ð12Þ
where, dcp is the distance between cc and fp.
Finally, the Green-Gauss theorem is used to compute the ‘‘Reconstruction-Flux” at the cell center
~Ccc ¼
1
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X
f
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~Af : ð13Þ
Here the value of wfc can be approximated as being equal to wfp. Expanding the summation in (13), we obtain
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In (14), the term
P

f K~Af ¼ K
P

f
~Af

� �
equals 0 for all closed cells. The above formulation reconstructs the cell center value of

the species flux vector based on known normal projections of the species fluxes at the faces and other mesh information
only.

For an orthogonal structured mesh (as shown in Fig. 1), the ‘‘Reconstruction-Flux” scheme reduces to
½~E � ~C�ði; jÞ ¼ ½Exðiþ 1=2; jÞ þ Exði� 1=2; jÞ�
2

½Cxðiþ 1=2; jÞ þ Cxði� 1=2; jÞ�
2

þ ½Eyði; jþ 1=2Þ þ Eyði; j� 1=2Þ�
2
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2

: ð15Þ
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In (15), the electric field and species flux are evaluated at the cell center before performing their dot product, while in (10)
the Joule heating is evaluated at the face centers and then interpolated at the cell center.

As an alternative to the above approach, one could also choose to recompute the species flux at the cell center with the
same drift-diffusion approximation that is used to compute the flux at the face centers
Fig. 3.
converg
~Ck ¼ �lknk
~r/� Dk

~rnk; ð16Þ
where lk and Dk are the mobility and diffusion coefficients of species k. We will call this method the ‘‘Recomputed-Flux”
scheme. The number density ðnkÞ is already available at the cell center and the electric field and gradient of the species num-
ber density can be evaluated by the Green-Gauss method (13). In most models [9–11], electron fluxes at the face centers are
discretized with the Scharfetter–Gummel exponential scheme to overcome the stiffness in the drift-diffusion form of the
electron flux. This approach to evaluating the electron fluxes at the cell center (with reconstruction gradients) is therefore
not consistent with the electron fluxes evaluated at the face centers (with the exponential scheme). Consequences of this
inconsistency will be discussed in the next section.

3. Results

3.1. Test case

We consider a one-dimensional direct-current glow discharge between two infinitely large planar electrodes. The inter-
electrode distance is 1 cm and the pressure is 1 Torr. A constant voltage difference of 250 V is applied between the two elec-
trodes. The pure argon discharge gas is considered with the argon plasma modeled by three species (ground state atoms Ar,
ions Arþ and electrons e� ). The species continuity equation is solved for the ions and the electrons, while the background
argon number density is held constant. For computational expediency, we assume a simplified chemistry comprising a single
ionization reaction due to electron impact ðeþ Ar ! 2eþ ArþÞ. An independent solution of the zero-dimensional electron
Boltzmann equation (using the BOLSIG+ software [16]) provides the reaction rate coefficient and the electron transport coef-
ficients as function of the electron temperature. The ion transport properties are derived from experimental mobility data
[17]. A constant value of the secondary emission coefficient of 0.05 is assumed for the ions impacting at the surface which
produce a flux of electrons entering the discharge depending on the ion flux leaving the discharge to wall surfaces. We test
our numerical method for computing the Joule heating term in the electron energy equation alone. The gas energy equation
is not solved and a constant gas temperature of 300 K is assumed. The boundary conditions employed in this study are sim-
ilar to the ones described in detail in Ref. [10]. Kinetically limited flux conditions are used for the flux of electrons at the solid
surfaces, while mobility limited flux conditions are imposed for all ions at the surfaces. Dirichlet boundary conditions with
specified potentials are used for the Poisson’s equation. The simulations are typically started with uniform initial conditions
for the field variables; e.g. zero potential, an electron temperature of 10,000 K, and charged species densities of 1014 m�3 for
the electrons and ions such that the plasma is quasineutral.

Figs. 3 and 4 show mesh-converged results for which the ‘‘Reconstruction-Flux” scheme has been used using a 1000-cell
mesh as discussed below. The cathode is placed at x = 0 cm and the anode at x = 1 cm. A peak number density of ionized spe-
cies of � 1016#=m3 is observed in the quasineutral region of the plasma. The cathode sheath occupies � 25% of the dis-
Charged species number density profile for a one-dimensional 250-V Argon discharge (1 Torr) obtained using a 1000-cell mesh that satisfies mesh-
ence on all of the numerical methods used.



Fig. 4. Electrostatic potential and electron temperature profiles for a one-dimensional 250-V Argon discharge (1 Torr) obtained using a 1000-cell mesh that
satisfies mesh-convergence on all of the numerical methods used.
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charge. A sharply peaked electron production profile (not shown) is located at the sheath edge. The electron temperature is
� 4 eV in the bulk plasma and increases to � 20 eV in the cathode sheath. The current density for these conditions is
� 0:2 mA=cm2. Results obtained with different schemes will be compared next. We use the computed value of the current
density as a metric for comparing the accuracy between the different numerical methods. The peak number density of the
ionized species ðArþÞ has also been used and yields the same results.

3.2. One-dimensional mesh

We first discuss results for the above test case using a one-dimensional version of the self-consistent plasma model,
where solution variables vary only in the direction perpendicular to the inter-electrode plane. Since a two-dimensional
implementation of the above method is used, the numerical solution to this one-dimensional problem is enabled by stacking
a layer of single quadrilateral cells and imposing zero-flux boundary conditions in the other directions. The numerical
schemes discussed above have been tested on three different meshes: a 60-cell, 250-cell and 1000-cell mesh. These meshes
are stretched to obtain a better resolution of the cathode sheath region. Note that most two-dimensional simulations of gas
discharges presented in the literature do not use more than � 50 mesh points in the electric field direction (inter-electrode
direction) to capture the cathode sheath of glow discharges. The coarsest mesh discussed in this paper is therefore represen-
tative of a majority of the modeling work reported in the literature. The three flux discretization schemes, together with the
‘‘Reconstruction-Flux” discretization for the Joule heating source term, were stable on the three meshes for time steps smal-
ler than � 10�9 s. The same discretization scheme was used for all the species fluxes and energy fluxes. Starting from arbi-
trary initial conditions, a steady state was reached after � 10�4 s. Fig. 5 shows the computed current density obtained at
steady state for the different face flux discretization schemes on the three meshes. Only the exponential scheme provides
reasonably accurate results on the coarsest mesh. The central scheme fails to yield accurate results on coarse meshes. Neg-
ative values and oscillations appear for the electron density and electron temperature profiles in the cathode sheath region,
which pollutes the entire solution. The upwind scheme is the most diffusive, and provides the least accurate solution even on
Fig. 5. Computed current densities obtained on one-dimensional meshes with the different numerical schemes (see Fig. 3 caption for physical conditions of
the discharge).
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the 1000-cell mesh. The good agreement between the solutions from the different schemes on the finest mesh confirms that
all the numerical schemes are consistent. The ‘‘Reconstruction-Flux” discretization for the Joule heating source term was
compared to the approach presented in (10) and both methods yield similar results for the different face flux discretization
schemes. The difference in the computed current density was typically less than 1%.

The ‘‘Recomputed-Flux” Joule heating term discretization was also tested on the different meshes and with the three face
flux discretization schemes. The upwind scheme, combined with the ‘‘Recomputed-Flux” discretization, was found to be
unstable on the three meshes (for arbitrarily small values of the time step). For time steps smaller than � 10�9 s, the cen-
tral-difference scheme is stable only on the 1000-cell mesh, while the exponential scheme is stable on the 250- and
1000-cell mesh. Fig. 5 shows the current density obtained with the ‘‘Recomputed-Flux” Joule heating discretization for those
cases where a stable solution was obtained. The accuracy of the solutions is comparable with those obtained with the
‘‘Reconstruction-Flux” Joule heating term discretization. Fig. 6 shows the electron fluxes at the cell centers computed with
the Scharfetter–Gummel exponential discretization scheme on the 250-cell and 1000-cell meshes. The ‘‘Recomputed-Flux”
Joule heating term discretization fails to accurately estimate the electron flux on coarse meshes. The drift and diffusion com-
ponents of the electron fluxes are sharply peaked at the cathode sheath and largely cancel each other if evaluated properly.
The ‘‘Recomputed-Flux” discretization yields a non-monotonic electron flux on coarse meshes, which leads to numerical
instabilities and therefore fails to predict discharge phenomena accurately.

3.3. Two-dimensional mesh

The above one-dimensional test case is now simulated using two-dimensional unstructured meshes by applying appro-
priate zero-flux boundary conditions for all equation in the second direction. Three different unstructured meshes are used
to demonstrate our proposed ‘‘Reconstruction-Flux” discretization for the Joule heating source term. These two-dimensional
meshes are shown in Fig. 7. The length of the three meshes is 1 cm, while their width is 0.4 cm. Mesh (a) in Fig. 7 comprises
relatively uniform triangles and is coarser than the triangular mesh (b) which is refined toward the cathode. Mesh (c) con-
tains both triangular and quadrilateral cells and comprises highly skewed cells. The presence of highly skewed cells in mesh
(c) therefore leads to high discretization errors and can also affect stability of the numerical schemes.. Mesh (a), (b) and (c)
comprises 2016, 4972 cells, and 2228 cells respectively. As with the one-dimensional meshes, the three face flux discretiza-
tion schemes, together with the ‘‘Reconstruction-Flux” Joule heating discretization, are stable for time steps smaller than
� 10�9 s. Table 1 shows the current density obtained with the different numerical schemes. For comparison, the mesh-con-
verged current density (obtained with the central-difference scheme or Schafetter-Gummel scheme on the 1000-cell one-
dimensional mesh) was 0:209 mA cm�2. The central-difference discretization scheme is the most accurate method on the
triangular meshes while the solution obtained with the Scharfetter–Gummel scheme is reasonably accurate. No oscillations
or negative values of the electron temperature or electron density are observed on the two-dimensional triangular meshes.
On the mesh (c) with highly skewed cells, the exponential scheme yields the most accurate results (small oscillations ap-
pears the for central-difference scheme). The solution obtained with the upwind discretization scheme is quite diffusive
on all meshes. Fig. 7 shows the electron temperature profiles obtained with the exponential scheme. The nonuniformities
that appear in the transverse direction (direction parallel to electrode plane) on mesh (c) clearly show the limitations of
our first-order model for highly skewed cells.

The ‘‘Recomputed-Flux” Joule heating term discretization combined with the upwind or Scharfetter–Gummel exponential
face flux discretization scheme is unstable on all the unstructured meshes (regardless of the value of the time step). Only the
central-difference scheme is stable with this method for the two triangular unstructured meshes. This confirms that the
Fig. 6. Computed electron fluxes on one-dimensional meshes with different numerical schemes (see Fig. 3 caption for conditions of the discharge). The
figure shows a close-up of the solution in the cathode sheath region.



Fig. 7. Computed electron temperature profiles obtained with the ‘‘Reconstruction-Flux” method (combined with the exponential discretization of the
fluxes) on two-dimensional unstructured meshes (see Fig. 3 caption for the conditions of the discharge).

Table 1
Computed current densities (in mA cm�2) obtained on the two-dimensional meshes with the different numerical schemes (see Fig. 3 caption for conditions).
The mesh-converged current density (obtained with the central-difference scheme on the 1000-cell one-dimensional mesh) is 0.209 mA cm�2. Crosses indicate
that a stable solution could not be obtained due to numerical instabilities.

‘‘Reconstruction-Flux” scheme ‘‘Recomputed-Flux” scheme

Upwind Central S-G Upwind Central S-G

Coarse triagular mesh (a) 0.167 0.198 0.193 x 0.181 x
Refined triangular mesh (b) 0.184 0.208 0.205 x 0.205 x
Mixed triangles and quadrilaterals with skewed cells mesh (c) 0.166 0.225 0.211 x x x
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‘‘Recomputed-Flux” discretization is less robust than the ‘‘Reconstruction-Flux” discretization approach. As shown in Table 1,
the results obtained with the ‘‘Recomputed-Flux” discretization are also less accurate than those obtained with the ‘‘Recon-
struction-Flux” discretization.

4. Conclusion

An effective approach to numerical discretization of the Joule heating source term for fluid models of plasma discharge
phenomena is presented in this paper. The method, which we call the ‘‘Reconstruction-Flux” discretization, has been devel-
oped for a cell-centered finite-volume scheme of the gas discharge governing equations on unstructured meshes. In this
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method, the Joule heating term is computed by evaluating the dot product of the electric field and the species flux at the cell
center. The species flux at the cell center is reconstructed based on the normal projection of the species fluxes at the faces
enclosing the cell. The method was validated by simulating a one-dimensional argon glow discharge on different meshes. We
compared the ‘‘Reconstruction-Flux” discretization of the Joule heating source term with another method where the flux is
recomputed at the cell center with the drift-diffusion approximation. The ‘‘Reconstruction-Flux” discretization approach is
found to be a robust and accurate method on structured and unstructured meshes. This method, combined with the Schar-
fetter–Gummel exponential face flux discretization scheme, produces reasonably accurate results even on coarse meshes.
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